37. An X-Ray Study of the Phthalocyanines. Part III. Quantitative Structure Determination of Nickel Phthalocyanine.

By J. Monteath Robertson and Ida Woodward.
In a recent paper (J., 1936, 1195) it was shown that the phase constants of the X-ray reflections from crystals of phthalocyanine and its nickel derivative could be determined by comparing absolute measurements of the corresponding structure factors. This led to a direct metrical determination of the structure of the metal-free compound, by the method of Fourier analysis, with results in agreement with the chemical structure assigned by Linstead (J., 1934, 1016). Some small distortions from regularity were found to exist in the molecule, and it was thought these might be caused by internal hydrogen bonds connecting opposite pairs of i soindole nitrogen atoms. In order to obtain further information on this point and, in particular, to study the effect on the inner nucleus of the presence of a co-ordinating metal atom, we have now completed an independent Fourier analysis of the nickel phthalocyanine structure. Both structures have been verified by computing all the structure factors from the co-ordinates assigned to the atoms. These results are given in the experimental section (Table V).

The crystal data for nickel phthalocyanine, $\mathrm{C}_{32} \mathrm{H}_{16} \mathrm{~N}_{8} \mathrm{Ni}$, are: space group $C_{2 h}^{5}\left(P 2_{1} / a\right)$, $a=19 \cdot 9, b=4 \cdot 71, c=14 \cdot 9 \mathrm{~A} ., \beta=121 \cdot 9^{\circ}$, with two centrosymmetrical molecules per unit cell of volume $1186 \mathrm{~A}^{3}$; d (found) $=1 \cdot 63$, (calc.) $=1 \cdot 59, M=571, F(000)=584$. The linear dimensions are almost identical with those of free phthalocyanine.

The method of finding the phase constants has already been described (loc.cit., p. 1197), and in fact the determinations made for frec phthalocyanine carry with them corresponding determinations for nickel phthalocyanine. It should be noted, however, that the results described below are derived from an entirely independent set of intensity measurements, made upon crystals of nickel phthalocyanine. The structure factors derived from these measurements, with the phase constants for the ($h 0 l$) zone, are collected in Table I.

Table I.
Values and Signs of $F(h 0 l)$.

There are fewer absent reflections than in the metal-free compound. The great majority of those present are of positive sign, and the remaining negative values are all relatively small. This is due to the positive contribution made by the two nickel atoms to each reflection. Calculation shows that if the atomic number of the central metal atom were increased to about 60 , all the structure factors would be of positive sign. This result

Fig. 1.
Projection of nickel phthalocyanine along the b axis, which makes an angle of $44 \cdot 2^{\circ}$ with the molecular plane. Each contour line represents a density increment of one electron per A. ${ }^{2}$, except on the central nickel atom, where the increment is five electrons per A. ${ }^{2}$ for each line. The one-electron line is dotted.

suggests a new method of direct analysis, viz., by introducing an element at a known point in the structure of sufficient scattering power to " swamp " all the reflections. In a centrosymmetrical structure of the present type, the effect would be to convert all the structure factors to positive sign, and a direct Fourier analysis could be carried out. We hope to apply this method in a later investigation to find the orientation of the platinum phthalocyanine molecule in the crystal, which is not isomorphous with the other members of this series.

The result of the double Fourier synthesis for nickel phthalocyanine, with the figures of Table I as coefficients, is shown by the contoured map in Fig. 1 (which should be compared with Fig. 2 of the previous paper, loc. cit., p. 1201). The resolution of the various atoms is quite equal to that obtained with free phthalocyanine, and the whole structure is closely similar, apart from the central nickel atom. On the nickel atom the contour levels, after the dotted one-electron line, are drawn at intervals of 5 electrons per A. ${ }^{2}$, and the peak value of the density at the centre is 39 electrons per A. ${ }^{2}$. This extreme peak, however, appears to have very little distorting effect on the surrounding structure.

Fig. 2.
Dimensions of the nickel phthalocyanine molecule.

The map can be measured, and the orientation of the molecule in the crystal calculated, in a manner similar to that described for free phthalocyanine. Details are given in the experimental section. It is found that the molecule is planar and the orientation is almost identical with that of free phthalocyanine, the molecular plane making an angle of $44 \cdot 2^{\circ}$ with the projection plane, (010).

Discussion of the Structure.-From the molecular co-ordinates in Table III a normal projection of the molecule can be made, and this is shown in Fig. 2. The benzene rings appear as sensibly regular plane hexagons, the length of the sides deviating by not more than 0.04 A . from the mean value of 1.39 A . which was assumed in calculating the orientation of the molecule. These rings are connected to the inner carbon-nitrogen nucleus by $\mathrm{C}-\mathrm{C}$ links of length 1.47 and 1.45 A . The corresponding links in free phthalocyanine gave the uniform
value of 1.49 A . The small contraction found for nickel phthalocyanine is practically within the limits of error (about 0.03 A .) and we should not attach much importance to this result.

The structure of the inner nucleus, however, shows certain changes compared with free phthalocyanine which, although not of large magnitude, are yet definitely beyond the limits of probable error which would arise from deficiencies in the experimental work or in the construction of the map. The largest of these is a shift of about 0.09 A . of each of the four isoindole nitrogen atoms towards the nickel atom to which they are bound by covalent or co-ordinate links. The movement is effected largely by a readjustment of the angles around the 16 -membered $\mathrm{C}-\mathrm{N}$ ring (compare with Fig. 3 of the previous paper). In particular, the angles at the apex $(9,13)$ of the isoindole pentagons have decreased from 108°

Fig. 3. Enlargement of central portion of molecule.

to 99°, while the side angles $(8,10,12,14)$ have increased by $4-6^{\circ}$.

As a result of the inward displacement of the i soindole nitrogen atoms, their distance from the centre of the nickel atom is now only 1.83 A ., compared with a corresponding value of 1.92 A . in the metal-free compound, measured from the nitrogen atoms to the centre of the molecule. It is interesting to note that this nickel-nitrogen distance of 1.83 A . is very close to the sum of the radii of neutral nickel (1.24 A.) and doubly-linked nitrogen (0.61 A .). When a larger metal atom, such as platinum (radius 1.38 A .), is substituted in the phthalocyanine molecule, it is probable that the inward displacement of the nitrogen atoms observed in the present structure will be diminished or even reversed (cf. Barrett, Dent, and Linstead, J., 1936, 1719).

In addition to these changes there is an interesting alteration in the dimensions of the $\mathrm{C}-\mathrm{N}$ links in the nucleus itself. For free phthalocyanine these had the practically constant value of $1.33-1.34 \mathrm{~A}$. In the present structure, the links $9-8$ and $9-10$, forming two sides of the isoindole pentagon, have increased in length to $1.38-1.39 \mathrm{~A}$., a result which might to some extent have been anticipated in view of the strong covalent attachment of atom 9 to the central nickel atom. But the remaining links of the 16 -membered ring, $8-7$ and $10-11$, although situated far from the nickel atom, have also increased in length to 1.38 and 1.37 A .; the net result being that all the $\mathrm{C}-\mathrm{N}$ links of the nucleus remain of practically equal length, although about 0.04 A . longer than in free phthalocyanine.

It should be emphasised that this change in interatomic distance within the nucleus is of small order, and not much above the limit of uncertainty imposed by the incomplete resolution of the various atoms. The inward shift of the isoindole nitrogen atoms, amounting to 0.09 A ., appears to be quite definite, but even here there are disturbing factors. These can best be studied by reference to Fig. 3, which gives an enlarged projection of the central portion of the molecule. The contour levels of the nickel atom are here drawn for density increments of 2 electrons per A. ${ }^{2}$, the 1,0 , and -1 levels are dotted, and all the other lines are at unit intervals. The roundness of the nickel atom indicates that there are no serious errors in the experimental work or in the calculations. The contours deviate
very slightly from true circles, although there is a small elongation in the direction of the c axis, a fact which may indicate a preferred direction in the thermal movements of the atom.

The four surrounding isoindole nitrogen atoms are shown at the corners of the diagram and the positions of the centres, obtained by averaging the four atoms and from other considerations, are indicated by small circles. The corresponding centres obtained from free phthalocyanine are shown by crosses. The inward shift of the atoms seems to be quite definite, and it might even be slightly greater than the amount we have given. There is, however, the difficulty of allowing for certain spurious undulations which may surround the nickel atom, due to the Fourier series being incomplete. Six small troughs will be observed, where the density drops to from - 1 to - 1.5 (as against a peak value at the centre of the nickel atom of 39). Further out, on a circle which will approximately pass through the i isoindole nitrogen atoms, we might expect similar spurious peaks, and two such effects can be observed in Fig. 1, in line with the nitrogen atoms 11 and 11'. These effects, if present on the isoindole nitrogen atoms, might give a false impression of the positions of their centres, but we do not think they would explain the inward shift of the atoms that has been found. More abrupt distortions of the contour levels might be expected if such false detail were present on these atoms.

It is interesting to note that quite well-defined bridges exist in the direction of the covalent links connecting the nickel atom to the four nitrogen atoms (Fig. 3). The density in these regions is quite small, being only $0.5-0.7$ electron per A. ${ }^{2}$, but the result seems fairly definite as the bridges stand out above the adjacent negative portions.

In free phthalocyanine (J., 1936, 1205) it was shown that the molecule was slightly distorted from true tet ragonal symmetry in a systematic manner which could be explained qualitatively by assuming that the distorting forces acted between the pairs of $i s o i n d o l e$ nitrogen atoms 9,13 ' and $13,9^{\prime}$. 'To explain these forces, hydrogen-bond formation was assumed between the nitrogen atoms. We might expect that in nickel phthalocyanine these distortions would disappear and the molecule become truly tetragonal, owing to the more symmetrical distribution of the binding forces towards the central nickel atom.

The symmetry of the molecule can be tested in the same way as for free phthalocyanine, viz., by comparing the lengths of horizontal and vertical lines connecting corresponding pairs of atoms, which would be equidistant if the molecules were exactly tetragonal. The measurements for nickel phthalocyanine are given (in A.) in Table II, with the differences in the lengths of corresponding lines, which give a measure of the departure from true tetragonal symmetry. The differences found for the free phthalocyanine molecule are also given for comparison.

Table II.

Test of Symmetry.

		Differences.	
Horizontal lines.	Vertical lines.	$\overbrace{\text { Nickel phthalocyanine }}$	Free phthalocyanine.
$8,14^{\prime}=2 \cdot 34$	$10,12=2 \cdot 36$	-0.02	-0.03
$9,13^{\prime}=2 \cdot 56$	$9,13=2 \cdot 60$	-0.04	-0.11
$10,12^{\prime}=5 \cdot 32$	$8,14=5 \cdot 38$	-0.06	-0.14
11, $11^{\prime}=6.72$	$7,7^{\prime}=6.84$	$-0 \cdot 12$	$-0 \cdot 22$
1, $15^{\prime}=8 \cdot 36$	$2,16=8 \cdot 18$	$0 \cdot 18$	$0 \cdot 24$
$6,20^{\prime}=5 \cdot 66$	$3,17=5 \cdot 52$	$0 \cdot 14$	$0 \cdot 19$
$2,16^{\prime}=10 \cdot 30$	$1,15=10 \cdot 22$	0.08	$0 \cdot 20$
$5,19^{\prime}=4.88$	$4,18=4 \cdot 87$	$0 \cdot 01$	$0 \cdot 08$
$3,17^{\prime}=9.47$	$6,20=9 \cdot 56$	-0.09	$0 \cdot 08$
$4,18^{\prime}=6.77$	$5,19=6.88$	$-0 \cdot 11$	0.03

The differences are all less in nickel phthalocyanine, except the last two, which have changed in sign. The molecule has thus become more truly tetragonal with the insertion of the nickel atom, a fact which lends some support to the theory of internal hydrogen bonds previously discussed. But the remaining distortions are hard to explain. The molecule appears to retain a slight deformation of the same type as found in the free compound.

With regard to the minimum intermolecular distances and the arrangement of molecules in the crystal, the calculations and diagrams given for free phthalocyanine (loc. cit., p. 1207) apply to the nickel derivative with sufficient accuracy for most purposes. The perpendicular
distance between the planes of parallel molecules situated at either end of the b axis translation is 3.38 A ., and the normal projection of one of these molecules in the plane of the other is shown in Fig. 4. The dotted lines connect the atoms of one molecule whose plane lies 3.38 A . beneath the other. It is seen that the outer nitrogen atom of one molecule comes almost exactly over the nickel atom of the other molecule. The distance between the two atoms is thus only 3.38 A ., which is practically equal to the closest distance of intermolecular approach in the whole structure (compare data for free phthalocyanine).

In the crystal, therefore, the nickel atom is surrounded by six nitrogen atoms. Four of these lie at the corners of a square, 1.83 A . from the nickel atom, and bound to it by covalent (or co-ordinate) links. The other two lie vertically above and below the nickel atom, at a distance of $3 \cdot 38 \mathrm{~A}$. It can be seen from Fig. 4 that none of the other atoms in the molecule

Fig. 4.
Normal projection of two parallel molecules.

comes exactly over another in this manner. In fact, there is a distinct tendency for the atoms of the underlying molecule to be found in the gaps between the atoms of the upper molecule, a fact which probably governs the orientation assumed by the molecules in the crystal.

Experimental.

Fourier Analysis and Orientation of the Molecule.-The measurement of intensities and examples of the determination of phase constants for nickel phthalocyanine have already been described (loc. cit., p. 1196). In preparing the contour map shown in Fig. 1, the electron-density series for the ($h 0 l$) zone was summed at 1800 different points on the asymmetric unit, the axial sub-divisions being the same as those employed for free phthalocyanine. Measurements from the map are referred to the molecular axes L and M (Fig. 2). The 19 lines connecting pairs of atoms in the L direction, $\left(7,7^{\prime}\right),(8,14),(9,13)$, etc., are all found to be parallel to within $\pm 0.5^{\circ}$, and their mean direction makes an angle of $69 \cdot 45^{\circ}$ with the a axis $\left(\eta_{L}\right)$. Similarly, the 19 lines connecting atoms in the M direction, ($11,11^{\prime}$), $\left(10,12^{\prime}\right),\left(9,13^{\prime}\right)$, etc., are parallel to within $\pm 0.35^{\circ}$, and their mean direction makes an angle of $-22 \cdot 4^{\circ}$ with the a axis $\left(\eta_{M}\right)$. For free phthalocyanine we found $\eta_{L}=69 \cdot 3^{\circ}$ and $\eta_{M}=-22.9^{\circ}$. The difference of 0.5° in η_{M} is probably significant, as we should estimate the error in the mean value for the 19 lines at 0.1° to $0 \cdot 2^{\circ}$.

The inclination of the M molecular axis to the b axis of the crystal $\left(\psi_{M}\right)$ can be calculated in the manner previously described, by making use of the four benzene rings as "indicators." The results are as follows :

$$
\begin{gathered}
\text { Ring 1 . . 4, } \psi_{M}=46 \cdot 6^{\circ} . \quad \text { Ring } 15 \ldots . . .18, \psi_{M}=45 \cdot 2^{\circ} . \\
\text { Ring } 1^{\prime} \ldots 4^{\prime}, \psi_{M}=45 \cdot 9^{\circ} . \quad \text { Ring } 15^{\prime} \ldots .18^{\prime}, \psi_{M}=45 \cdot 8^{\circ} . \\
\\
M e a n \psi_{M}=45 \cdot 9^{\circ} .
\end{gathered}
$$

The mean result is probably accurate to within 1°, and it happens to be identical with ψ_{M} for free phthalocyanine. From these figures, and the six equations given in the previous paper, the complete orientation of the molecule in the crystal can be calculated, with the following results :

$$
\begin{array}{cccl}
\chi_{L}=69 \cdot 5^{\circ} & \cos \chi_{L}=0.3508 & \chi_{M}=48 \cdot 4^{\circ} & \cos \chi_{M}=0.6638 \\
\psi_{L}=88 \cdot 1^{\circ} & \cos \psi_{L}=0.0335 & \psi_{M}=45 \cdot 9^{\circ} & \cos \psi_{M}=0.6960 \\
\omega_{L}=20 \cdot 6^{\circ} & \cos \omega_{L}=0.9358 & \omega_{M}=105 \cdot 9^{\circ} & \cos \omega_{M}=-0.2737 \\
& \chi_{N}=131 \cdot 3^{\circ} & \cos \chi_{N}=-0.6605 \\
& \psi_{N}=44.2^{\circ} & \cos \psi_{N}=0.7173 \\
& \omega_{N}=77 \cdot 2^{\circ} & \cos \omega_{N}=0.2223 &
\end{array}
$$

Molecular Dimensions and Co-ordinates.-The positions of the atoms obtained by measurement of the contour map are given in Table III. Individual measurements of the co-ordinates taken parallel to the L and the M axis are first given (l and m) and in the last two columns the mean value is multiplied by the sine of the inclination of the molecular axis to the b crystal axis, along which the projection is made. This gives the actual molecular co-ordinates, L and M, from which the dimensions and angles in Fig. 2 are calculated. The accuracy varies somewhat in different parts of the projection ; e.g., the M co-ordinates of atoms 9 and 10 are less certain than their L co-ordinates. But in general the error should not be greater than $0.02-0.04 \mathrm{~A}$.

Table III.
Co-ordinates with Respect to Molecular Axes.

			Mean value, A.	
Atoms.	l measured, A.	m measured, A.	$L\left(l \sin \psi_{L}\right)$.	$M\left(m \sin \psi_{\boldsymbol{M}}\right)$
1, 15	5•12, 5•11	2.98, $3 \cdot 02$	\pm - 11	$4 \cdot 18$
2, 16	$4 \cdot 11,4 \cdot 08$	3.70, $3 \cdot 70$	$\pm 4 \cdot 09$	$5 \cdot 15$
3, 17	2.78, $2 \cdot 74$	3.42, $3 \cdot 38$	士2.76	$4 \cdot 73{ }_{5}$
4, 18	$2 \cdot 45,2 \cdot 42$	$2 \cdot 45,2.41$	$\pm 2.43{ }_{5}$	$3 \cdot 38{ }_{5}$
5, 19	3.45, $3 \cdot 43$	$1.75,1.75$	$\pm 3 \cdot 44$	$2 \cdot 44$
6, 20	$4 \cdot 78,4: 78$	2.02, $2 \cdot 05$	± 4.78	$2 \cdot 83$
7	$3 \cdot 42$	0	$\pm \mathbf{3} 42$	0
8, 14	2.69, $2 \cdot 69$	$0 \cdot 85,0.83$	$\pm 2 \cdot 69$	$1 \cdot 17$
9, 13	1.31, 1.29	$0.92,0.92$	± 1.30	$1 \cdot 28$
10, 12	$1 \cdot 18,1 \cdot 18$	1.91, 1.91	上1.18	$2 \cdot 66$
11	0	$2 \cdot 41{ }_{5}$	0	$3 \cdot 36$

The co-ordinates of the atoms referred to the monoclinic crystal axes can be obtained by combining the molecular co-ordinates with the orientation direction cosines given above, or by direct measurement from the Fourier projection. The results are given in Table IV, and these values are used in the structure factor calculations.

Calculation of Structure Factors. Electron Counts.-From the crystal co-ordinates of free phthalocyanine (J., 1936, 1204) and the formulæ for the space group $P 2_{1} / a$ (cf. " International Tables for the Determination of Crystal Structure," Vol. 1, p. 102) the geometrical structure factors of all the reflections of free phthalocyanine have been calculated. The signs of the factors so obtained are found to agree in every case with the direct experimental determinations of the phase constants upon which this analysis has been based, except for the very weak $(16,0,1)$ which has changed from - to + . This single change can have no significant effect on the projection.

The proper structure factors, F, which express the ratio of the amplitude actually given by a reflection to the amplitude which would be given if the contents of the unit cell were replaced by a single electron, were obtained from the relation $F=S f$, where S is the geometrical structure factor, and f is a function which expresses the average reflecting power of the atoms in the crystal, in terms of θ, the angle of incidence of the rays. As 64 out of the 80 atoms (without counting hydrogen) in the unit cell of phthalocyanine are carbon, we have employed the f-values for typical organic hydrocarbons (Proc. Roy. Soc., A, 1935, 150, 110), increasing the contributions

Table IV.
Co-ordinates with Respect to Monoclinic Crystal Axes. Centre of Symmetry as Origin.

Atom.	x, A.	$2 \pi x / a$.	y, A.	$2 \pi y / b$.	z, A.	$2 \pi z / c$.
Ni	0	0°	0	0°	0	0°
1 CH	$6 \cdot 83$	$123 \cdot 6$	$3 \cdot 08$	235.3	$4 \cdot 29$	$103 \cdot 6$
2 CH	$6 \cdot 36$	$115 \cdot 0$	$3 \cdot 72$	$284 \cdot 4$	$2 \cdot 85$	$68 \cdot 9$
3 CH	$4 \cdot 91$	$88 \cdot 9$	$3 \cdot 39$	$258 \cdot 9$	1.51	36.6
4 C	$3 \cdot 94$	$71 \cdot 3$	$2 \cdot 44$	$186 \cdot 2$	$1 \cdot 59$	$38 \cdot 5$
5 C	$4 \cdot 41$	$79 \cdot 8$	1.81	$138 \cdot 5$	$3 \cdot 01$.72.7
6 CH	$5 \cdot 86$	$105 \cdot 9$	$2 \cdot 13$	$162 \cdot 9$	$4 \cdot 36$	$105 \cdot 3$
7 N	3•19	$57 \cdot 7$	$0 \cdot 12$	$8 \cdot 8$	3.77	$91 \cdot 1$
8 C	$3 \cdot 09$	$55 \cdot 9$	0.90	$69 \cdot 1$	$2 \cdot 59$	$62 \cdot 6$
9 N	1.85	$33 \cdot 4$	$0 \cdot 94$	$71 \cdot 6$	$1 \cdot 02$	$24 \cdot 6$
10 C	$2 \cdot 41$	$43 \cdot 7$	$1 \cdot 89$	144.5	$0 \cdot 44$	$10 \cdot 7$
11 N	$1 \cdot 66$	$30 \cdot 0$	$2 \cdot 34$	$178 \cdot 8$	-1.08	- 26.2
12 C	$0 \cdot 21$	$3 \cdot 8$	$1 \cdot 81$	138.5	$-2 \cdot 16$	- $52 \cdot 2$
13 N	-0.58	- 10.5	$0 \cdot 85$	$64 \cdot 8$	-1.85	- 44.6
14 C	-1.93	$-35 \cdot 0$	$0 \cdot 72$	$55 \cdot 3$	-3.34	- 80.8
15 CH	-2.71	$-49 \cdot 0$	$2 \cdot 74$	$209 \cdot 1$	-6.98	-168.7
16 CH	-1.28	$-23 \cdot 1$	$3 \cdot 45$	263.5	-6.17	$-149 \cdot 1$
17 CH	-0.24	-4.3	$3 \cdot 20$	$244 \cdot 8$	-4.57	$-110 \cdot 4$
18 C	-0.60	$-10 \cdot 9$	$2 \cdot 27$	$173 \cdot 8$	-3.78	- 91.2
19 C	-2.01	-36.3	1.58	$120 \cdot 9$	-4.58	-110.6
20 CH	$-3 \cdot 07$	-55.4	$1 \cdot 81$	$138 \cdot 5$	$-6 \cdot 18$	$-149 \cdot 4$

of the nitrogen atoms relative to the carbon atoms by 20%, which is rather more than the ratio suggested by their atomic numbers.

The F values calculated in this manner are considerably below the measured values, and they require to be increased by a constant factor of 1.33 in order to afford the best agreements. Owing to the small size of the crystals upon which the absolute measurements were based ($0.040-0.068 \mathrm{mg}$.) the scale of the measured F values may be in error by 5% or even more, but it does not seem possible to explain the factor 1.33 in this manner. The high measured F values are most likely due to the temperature factor for phthalocyanine (which takes account of the thermal movement of the atoms) being much less than in the case of typical organic hydrocarbons. This explanation is very probable in view of the high m. p. of the compound $\left(>500^{\circ}\right)$. We have made no attempt to correct for the temperature effect in detail, but all the calculated values of F have been increased by the correlating factor of 1.33 .

The measured and calculated values of F for free phthalocyanine are given in cols. 3 and 4 of Table V. In col. 5, the contributions to the structure factors of the two nickel atoms are given. These values are taken from Brindley's experimentally determined scattering curve (Phil. Mag., 1936, 21, 778), but for the ($h+k$) odd reflections the contributions from the two nickel atoms are in opposite phase and the resultant is zero.

In the last two columns of the table the measured and calculated values of F for nickel phthalocyanine are given. The calculated values are derived from those of free phthalocyanine by the algebraic addition of the contributions from the nickel atoms. This method is sufficiently accurate to test the general agreements and the signs used in the Fourier analysis, which are all found to be correct for nickel phthalocyanine.

It is possible to make a more accurate calculation of the structure factors for nickel phthalocyanine by means of the revised co-ordinates given in Table IV of this paper; but as the displacement of the atoms, compared with free phthalocyanine, is small, differences will only be found in the higher-order reflections. A number of these structure factors with high indices have been recalculated in this manner, and it is found that on the average a small improvement in the agreements is obtained, particularly for the ($16,0,1$) and ($16,0,2$) planes. It would seem, however, that the estimated contributions of the nickel atoms (from Brindley's curve) are considerably too great for the furthest out reflections of large glancing angle (θ).

The general order of agreement between measured and calculated values of F is quite equal to that obtained for other more simple structures which have been successfully analysed. This is shown by the following figures which give the sum of the discrepancies between the measured and calculated values, expressed as a percentage of the total measured F values, for different zones in the two compounds. Absent reflections are included.

	(0kl) Zone.	(h0l) Zone.	($h k 0$) Zone.	All reflections.
Free phthalocyanine	$11 \cdot 1$	$13 \cdot 2$	$13 \cdot 8$	12.5
Ni phthalocyanine	$14 \cdot 0$	$14 \cdot 4$	$15 \cdot 1$	14.2

Table V.
Measured and Calculated Values of the Structure Factor.

		$\left(\mathrm{C}_{32} \mathrm{H}_{16} \mathrm{~N}_{8}\right) \mathrm{H}_{2}$.			$\overbrace{}^{\mathrm{C}_{32} \mathrm{H}_{16} \mathrm{~N}_{8} \mathrm{Ni} .}$		hkl.		$\left(\mathrm{C}_{32} \mathrm{H}_{16} \mathrm{~N}_{8}\right) \mathrm{H}_{2}$.		$\mathrm{C}_{32} \mathrm{H}_{16} \mathrm{~N}_{8} \mathrm{Ni}$.		
hkl.	$\begin{aligned} & (\lambda=0 \\ & 1.54) . \end{aligned}$	$\begin{gathered} F, \\ \text { meas. } \end{gathered}$	$\begin{gathered} F \\ \text { calc. } \end{gathered}$	$\begin{aligned} & \mathrm{Ni} \\ & 2 F . \end{aligned}$	F meas.	$\begin{gathered} F, \\ \text { calc. } \end{gathered}$		$\begin{gathered} (\lambda= \\ 1 \cdot 54) . \end{gathered}$	$\underset{\substack{F \\ \text { meas. }}}{ }$	F calc.		$\begin{gathered} F, \\ \text { meas. } \end{gathered}$	$F,$ $\begin{aligned} & \text { ca!c. } \end{aligned}$
200	0.092	<5	+ 15	52	55	$+67$	209	$0 \cdot 606$	14		22	<12	+ 13
400	$0 \cdot 183$	46	- 48	47	< 6		208	$0 \cdot 546$	15	+ 13	24	39	+ 37
600	0.275	38	+ 33	40	80	+ 73	207	$0 \cdot 485$	24	+ 20	27	51	+ 47
800	$0 \cdot 367$	9	+ 12	33	44	$+45$	206	$0 \cdot 425$	<10	+ 4	30	26	+ 34
10,00	$0 \cdot 458$	1	+ 10	28	44	+ 38	205	$0 \cdot 364$	72	- 54	34	29	- 20
12,00	$0 \cdot 550$	16	+ 23	24	41	$+47$	204	$0 \cdot 305$	10	+ 15	38	55	+ 53
14,00	$0 \cdot 641$	<12	-	21	14	+ 16	203	$0 \cdot 246$	13	- 16	42	31	+26
16,00	0.733	15	- 21	17	<15	- 4	202	$0 \cdot 189$	6	+ 21	46	54	+ 67
020	$0 \cdot 326$	9	- 12	36	21	+ 24	201	$0 \cdot 135$	92	-116	50	43	- 66
040	$0 \cdot 652$	6	+	20	22	+ 24	201	0.079	96	+107	53	137	+160
001	$0 \cdot 062$	78	+95	54	112	+149	$20 \overline{2}$	$0 \cdot 107$	17	+ 28	52	71	+ 80
002	$0 \cdot 123$	85	- 95	51	37	- 44	$20 \overline{3}$	$0 \cdot 156$	67	+ 59	49	113	+108
003	0.184	39	- 41	46	10	+ 5	$20 \overline{4}$	0.212	61	- 55	44	11	- 11
004	0.246	17	+ 11	42	56	+ 53	205	$0 \cdot 270$	36	+ 27	40	74	+ 67
005	$0 \cdot 307$	60	- 53	37	13	- 16	$20 \overline{6}$	$0 \cdot 329$	<9	+ 11	36	38	+ 47
006	$0 \cdot 369$	50	- 44	33	18	- 11	207	$0 \cdot 389$	21	+ 17	32	50	+ 49
007	$0 \cdot 430$	24	+ 25	30	57	+ 55	$20 \overline{8}$	0.449	<11	+	29	41	+ 38
008	$0 \cdot 491$	28	- 27	26	<11	- 1	209	0.510	<11	+ 11	26	28	+ 37
009	$0 \cdot 553$	10	-	24	18	+ 17	20,100	0.571	<12	- 10	23	17	+ 13
00,10	$0 \cdot 614$	13	+ 21	22	34	$+43$	20,II	$0 \cdot 632$	38	- 37	21	11	-16
00,11	$0 \cdot 676$	<12	+	19	16	+ 20	20,12	$0 \cdot 693$	<12	+ 1	19	<12	+ 20
00,12	0.737	<15	+	17	<15	+ 23	20,1̄3	0.757	38	+ 39	17	41	+ 56
							40,10	$0 \cdot 729$	<15	-	17	<15	+ 12
011	$0 \cdot 174$	36	-39	0	33	-39	409	$0 \cdot 669$	<12	+ 15	20	27	+ 35
012	0.204	36	- 36	0	35	- 36	408	$0 \cdot 609$	<12	-	22	21	+ 20
013	0.246	<11	+ 16	0	<11	+ 16	407	$0 \cdot 550$	10	$+$	24	35	+ 29
014	0.295	<12		0	<12	+ 1	406	$0 \cdot 491$	35	+ 27	26	58	+ 53
015	$0 \cdot 348$	35	+ 28	0	35	+ 28	405	$0 \cdot 434$	13	- 17	29	<11	+ 12
016	$0 \cdot 403$	38	+ 32	0	41	+ 32	404	0.377	66	- 61	33	28	- 28
017	$0 \cdot 460$	23	+ 29	0	31	+ 29	403	$0 \cdot 322$	<9	+ 12	36	46	+ 48
01	$0 \cdot 516$	<19	-1	0	<19	- 1	402	$0 \cdot 270$	< 7	+ 1	40	50	+ 41
019	$0 \cdot 576$	<20	-	0	<20	-	401	0.222	12	-16	44	29	+ 28
01,10	$0 \cdot 636$	<21	- 12	0	<21	- 12	401	$0 \cdot 159$	78	+ 75	48	129	+123
021	0.332	<13	- 3	36	39	+ 33	$40 \overline{2}$	$0 \cdot 157$	85	-96	48	46	- 48
022	$0 \cdot 349$	<13	0	35	37	+ 35	403	$0 \cdot 178$	74	-83	47	30	- 36
023	0.375	15	+ 15	33	47	+ 48	404	0.214	48	- 46	44	<6	-
024	$0 \cdot 408$	48	+ 43	31	74	+ 74	405	0.261	37	- 24	41	<7	$+17$
025	$0 \cdot 448$	16	- 16	29	18	+ 13	$40 \overline{6}$	$0 \cdot 312$	< 8	-	37	33	+ 32
026	$0 \cdot 492$	22	- 24	26	<16	+ 2	407	$0 \cdot 367$	42	+ 35	33	73	+ 68
027	$0 \cdot 540$	<18	- 7	24	27	$+17$	408	$0 \cdot 423$	59	+ 58	30	91	+ 88
028	0.580	24	+ 27	23	59	+ 50	$40 \overline{9}$	$0 \cdot 481$	13	+ 11	27	35	+ 38
029	$0 \cdot 642$	<21	- 5	21	18	+ 16	40,100	0.539	16	+ 15	25	38	+ 40
031	$0 \cdot 493$	<17	+ 3	0	<17	+ 3	40,1ī	$0 \cdot 599$	<12	+ 5	22	27	+ 27
032	0.504	<17	+ 8	0	<17	+ 8	40,12	0.658	24	- 21	20	<12	
033	$0 \cdot 522$	16	- 19	0	14	- 19	40,1ె3	0.716	16	- 21	18	<15	-3
034	0.547	<17	+	0	<17	+ 3	609	0.737	<15	- 11	17	<15	+ 6
035	0.577	<17	+	0	<17	+	608	0.679	16	+ 15	19	33	+ 34
036	$0 \cdot 612$	<17	0	0	<17	0	607	$0 \cdot 622$	56	+ 53	21	78	+ 74
037	$0 \cdot 651$	<17	+13	0	<17	+ 13	606	0.565	32	+ 34	23	50	+ 57
041	0.655	<17	+ 9	20	31	+ 29	605	$0 \cdot 510$	29	+ 21	26	49	$+47$
042	$0 \cdot 663$	<17	+ 3	20	19	+ 23	604	$0 \cdot 456$	26	+ 16	28	43	+ 44
043	0.677	<20	+ 3	19	<20	+ 22	603	$0 \cdot 405$	33	- 23	31	<10	+ 8
							602	$0 \cdot 356$	75	- 66	34	40	- 32
20,11	0.729	19	- 21	17	<15	- 4	601	$0 \cdot 312$	37	- 30	37	< 8	+ 7
20,10	$0 \cdot 668$	43	- 43	20	20	-23	601	$0 \cdot 298$	40	40	38	< 7	- 2

Table V (continued).

Table V (continued).

		$\underbrace{\left(\mathrm{C}_{32} \mathrm{H}_{16} \mathrm{~N}_{8}\right) \mathrm{H}_{2}}$.			$\overbrace{}^{\mathrm{C}_{32} \mathrm{H}_{18} \underbrace{\text { N }} \text {, } \mathrm{Ni} .}$				$\left(\mathrm{C}_{32} \mathrm{H}_{16} \mathrm{~N}_{8}\right) \mathrm{H}_{2}$.			$\underbrace{\mathrm{C}_{32} \mathrm{H}_{16} \mathrm{~N}_{8} \mathrm{Ni} \text {. }}$	
hkl.	$\stackrel{\sin \theta}{(\lambda \stackrel{1}{=}}$ $\left(\begin{array}{l} 1.54) . \end{array}\right.$	$\underset{\text { meas. }}{F}$	F	$\begin{aligned} & \mathrm{Ni} \\ & 2 F . \end{aligned}$	$\underset{\text { Fex }}{ }$	$\underset{\text { calc. }}{F}$	$h k l$.	$\begin{aligned} & \sin \theta \\ & (\lambda= \\ & 1 \cdot 54) . \end{aligned}$	$\begin{gathered} F, \\ \text { meas. } \end{gathered}$	$\begin{gathered} F, \\ \text { calc. } \end{gathered}$	$\begin{aligned} & \mathrm{Ni} \\ & 2 F . \end{aligned}$	$\stackrel{F}{F}$	$\underset{\text { calc. }}{F}$
18,09	$0 \cdot 706$	<16		18	<16	+ 13	520	$0 \cdot 3$	32	- 37	0	26	37
18,0,10	0.718	15		18	16	+ 23	620	-427	14	+ 17	30	52	+ 47
18,0,11	0.736	15		17	16	+25	720	$0 \cdot 457$	<10	0	0	<16	0
20,0¢	0.785	<14	+ 12	16	12	+ 28	820	$0 \cdot 491$	10	- 15	26	<16	+
20,07	0.778	<14	+ 9	16	<14	+ 25	920	. 526	<11	- 5	0	<18	
20,08	775	<14	1	16	<14	$+15$,20	.562	<11	+	24	15	+ 33
20,09	0.777	14	- 18	16	13	-	11,20	. 600	36	- 33	0	24	-
20,0,10	0.78	<14	+ 15	16	12	$+31$	12,20	$0 \cdot 639$	12	- 17	21	<19	+
							13,20	$0 \cdot 67$	<14	+	0	<23	+
110	$0 \cdot 1$	66	- 71	48	9	- 23	14,20	0.7	17	+ 13	18	<23	$+31$
210	$0 \cdot 187$	53	+ 63	0	44	+ 63	130	$0 \cdot 491$	14	- 12	26	<18	+ 14
310	0.213	19	- 19	44	20	+ 25	230	$0 \cdot 497$	<11	- 8	0	<18	- 8
410	0.24	21	- 23	0	14	- 23	30	50	<11	- 4	26	13	+ 22
510	281	7	4	39	38	+ 35	30	52	<11	-	0	<18	- 1
610	$0 \cdot 320$	10	- 4	0	<11	-	530	0.540	13	+ 20	24	31	+ 44
710	$0 \cdot 360$	<8	+ 1	34	37	$+35$	630	$0 \cdot 561$	<11	- 11	0	<19	- 11
810	$0 \cdot 401$	12	+ 16	0	<14	+16	730	$0 \cdot 585$	<12		23	21	$+30$
910	$0 \cdot 443$	28	- 25	29	<15		830	0.611	<13	+	0	<21	+
10,10	$0 \cdot 486$	16	- 12	0	<16	-12	930	-640	<14	+	21	<23	+ 29
11,10	$0 \cdot 529$	<11	+ 3	25	29	+ 28	10,30	$0 \cdot 670$	22	$+20$	0	<23	+20
12,10	0.573	<11	- 11	0	<19	- 11	11,30	$0 \cdot 702$	<14	+	18	<23	+ 22
13,10	0.618	<13	0	22	<21	+ 22	140	0.653	11	- 12	0	<20	-12
14,10	$0 \cdot 661$	<14	+	0	<23		240	0.659	<12	-	20	<20	+16
15,10	$0 \cdot 706$	<14	- 12	18	<23	$+$	340	0.666	<12	-	0	<20	- 1
120	$0 \cdot 329$	< 7	- 5	0	<13	-5	440	$0 \cdot 677$	<14	+ 9	19	<23	+ 28
220	$0 \cdot 339$	11	- 19	35	13	+ 16	540	0.691	<14	+ 11	0	<23	+ 11
320	$0 \cdot 354$	< 8	-7	0	<13	-7	640	0.707	<14	-	18	<23	
420	0.374	< 8	-	33	23	+ 32	740	0.726	16	24		<23	+ 24

The measured structure factors of the two strongest reflections for nickel phthalocyanine, the (001) and (201), are considerably less than the calculated values, probably owing to an extinction effect for which we have not been able to correct. This deficiency is shown in another way when an electron count is made for the nickel atom. When the density is integrated over the area of the nickel atom, we find $25 \cdot 6$ electrons instead of 28 as required by the atomic number of nickel. But if the amplitudes of the component terms in the Fourier series due to the (001) and (201) reflections are increased to the calculated values, the electron count gives a result of 26.9. The remaining deficiency of one electron is probably due to the omission of weak reflections lying beyond our experimental limits, the majority of which will make positive contributions, and so add to the density on the nickel atom.

An electron count has also been carried out on the nitrogen atom 11, which is one of the best resolved atoms in the structure, and sufficiently clear of its neighbours to give accurate results. The value obtained is $7 \cdot 0$ electrons.

Summary.

The structure of nickel phthalocyanine has been determined by a double Fourier synthesis of the X-ray crystal data for the ($h 0 l$) zone of reflections, employing absolute measurements of intensities and a direct determination of the phase constants by comparisons with free phthalocyanine. The results are expressed by a contoured electron-density map of the molecule in which every atom is separately resolved. The 60 parameters of the structure are determined to within $0.02-0.04 \mathrm{~A}$. The molecule is planar, and its orientation in the crystal is practically identical with that of free phthalocyanine. The structure of the molecule is also closely similar to that of free phthalocyanine, but there is a definite inward shift, amounting to about 0.09 A ., of each of the four isoindole nitrogen atoms towards the central nickel atom to which they are bound by covalent links. The $\mathrm{C}-\mathrm{N}$ interatomic distance of the inner nucleus is 1.38 A ., slightly greater than the value found for free

230 Wren and Crawford: Optically Active Alkylsuccinic Acids. Part I. phthalocyanine. The molecule is more nearly tetragonal than free phthalocyanine, but a small deformation still exists.

The structures assigned to nickel phthalocyanine and free phthalocyanine have been verified by the calculation of all the structure factors from the co-ordinates of the atoms. Some electron counts are given.

In conclusion, we wish to thank Sir William Bragg and the Managers of the Royal Institution for their continued interest in this work.

The Davy Faraday Research Laboratory,
The Royal Institution, London, W. 1.
[Received, December 15th, 1936.]

